金沙充值中心

向田
时间:2021-03-05  浏览:

姓名:向田(Xiang, Tian)

邮箱:txiang@ruc.edu.cn

职称:教授,理学博士,博士生导师

工作单位:金沙充值中心/数学学院

办公地址:中国人民大学北园1楼西配楼302


教育经历:

2010.09-2014. 05, 杜兰大学(Tulane University), 偏微分方程,博士

2007.09-2010. 06,北京师范大学,常微分方程与动力系统,硕士

2003. 09-2007. 06,西北师范大学, 数学与应用数学,学士


工作经历:

2022.09-至今,中国人民大学 教授

2016.09-2022.08,中国人民大学副教授,

2014. 10-2016. 08,中国人民大学, 金沙充值中心,博士后


研究方向:偏微分方程及其应用, 非线性分析以及动力系统


科研项目:

博士后一等基金(主持,已结题);

人民大学新教师启动基金(主持,已结题);

中国人民大学人才培育基金(主持);

国家自然科学基金青年项目(主持,已结题);

国家自然科学基金面上项目(主持,在研);

国家自然科学基金面上项目子课题(主持,在研);


新进工作及论文情况: 近年来主要关注趋化交错扩散方程组解的有界性,爆破性以及定性刻画等;在M3AS, CVPDE, SIAP, JDE, Nonlinearity, EJAM等国杂志上发表论文近40篇,多篇论文入选ESI高被引,被引400余次(mathscinet) ;部分代表论文:

  1. 1.F. Dai and T. Xiang, Boundedness and asymptotic stabilization in a two-dimensional Keller-Segel-Navier-Stokes system with sub-logistic source,Mathematical Models and Methods in Applied Sciences,in press.

    2.T. Xiang, Finite time blow-up in the higher dimensional parabolic-elliptic-ODE minimal chemotaxis-haptotaxis system.J. Differential Equations336(2022),44–72.

    3.G. Ren and T. Xiang, Global solvability in a two-species chemotaxis system with signal production.Acta Appl. Math.178(2022),Paper No. 12, 26 pp.

    4.H. Jin and T. Xiang,Negligibility of haptotaxis effect in a chemotaxis-haptotaxis model, Math. Models Methods Appl. Sci.31(2021),no. 7,1373–1417.

    5.K. Lin and T. Xiang, Strong damping effect of chemo-repulsion prevents blow-up.J. Math. Phys.62(2021),no. 4,041508, 29 pp

    6.K. Lin and T. Xiang, On boundedness, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop.Calc. Var. Partial Differential Equations59(2020),no. 4,Paper No. 108, 35 pp.

    7.T. Xiang and D. Zhu, Cone expansion and cone compression fixed point theorems for sum of two operators and their applications.J. Fixed Point Theory Appl.22(2020),no. 2,Paper No. 49, 24 pp.

    8.H. Li, R. Peng and T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion,European J. Appl. Math.31(2020),no. 1,26–56.

    9.T. Xiang and J. Zheng, A new result for 2D boundedness of solutions to a chemotaxis--haptotaxis model with/without sub-logistic source, .Nonlinearity32 (2019), 4890–4911.

    10.K.Lin and T. Xiang, On global solutions and blow-up for a short-ranged chemical signaling loop.J. Nonlinear Sci.29(2019),no. 2,551–591.

    11.T. Xiang, Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion, Commun. Pure Appl. Anal. 18(2019), 255–284.

    12.H. Jin and T. Xiang, Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller-Segel model, C. R. Math. Acad. Sci. Paris 356(2018), 875-885.

    13.H. Jin and T. Xiang, Convergence rate of solutions for a two-species chemotaxis-Navier-Stokes system with competitive kinetics, Discrete Contin. Dyn. Syst. Ser. B, 24(2019), 1919-1942.

    14.T. Xiang, Chemotactic aggregation versus logistic damping on boundedness in the 3D minimal Keller-Segel model, SIAM J. Appl. Math. 78(2018), 2420-2438.

    15.T. Xiang, Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system,J. Math. Phys. 59 (2018) no, 8, 081502, 11 pp.

    16.T. Xiang, How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system? J. Math. Anal. Appl. 459(2018), 1172–1200.

    17.H. Jin and T. Xiang, Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions,Discrete Contin. Dyn. Syst. Ser. B 23(2018), no. 8, 3071-3085.

    18.T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl. 39(2018), 278–299.

    19.H. Jin and T. Xiang, Boundedness and exponential convergence in a chemotaxis model for tumor invasion, Nonlinearity, 29 (2016) , 3579–3596.

    20.T. Xiang, On a class of Keller-Segel chemotaxis systems with cross-diffusion, J. Differential Equations 259 (2015), 4273–4326.

    21.T. Xiang, Boundedness and global existence in the higher dimensional parabolic parabolic chemotaxis system with/without growth source, J. Differential Equations 258 (2015), 4275–4323.


详见美国数学会Mathematical Reviews,:www.ams.org/mathscinet/

或 Research Gate 网页:https://www.researchgate.net/profile/Tian_Xiang


荣誉获奖:

中国人民大学课外教学优秀奖(2021)

北京市第三十一届大学生数学竞赛优秀指导老师(2020)

中国人民大学优秀论文奖(2018)

中国人民大学杰出学者青年学者B岗(2017)


教学课程:

本科生:高等数学,数学分析I,II,III,实变函数,泛函分析等。

硕博士: 应用泛函分析和发展型偏微分方程等。


金沙充值中心(控股)有限公司